Edmund Optics uses cookies to optimize and enhance the features and content on our website. Click “OK” for the full user experience, you can view additional information on the cookies we use by clicking the “Details” button. We do NOT sell your information from marketing cookies, we use it to improve ONLY YOUR experience with Edmund Optics.
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
Cookies are small text files that can be used by websites to make a user's experience more efficient.
The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies we need your permission.
This site uses different types of cookies. Some cookies are placed by third party services that appear on our pages.
You can at any time change or withdraw your consent from the Cookie Declaration on our website.
Learn more about who we are, how you can contact us and how we process personal data in our Privacy Policy.
Please state your consent ID and date when you contact us regarding your consent.
Most web browsers allow you to view your cookies in the browser preferences, typically within the "Privacy" or "Security" tab. Some browsers allow you to delete specific cookies or even prevent cookies from being created. While disallowing cookies in your browser may provide a higher level of privacy, it is not recommended since many websites require cookies to function properly. Alternatively, you can visit www.aboutcookies.org which provides directions on how to block or delete cookies on all major browsers.
Fiber optic light guides, like optical fibers themselves, do not produce beam-like outputs. They are very good for transmitting light and produce rather quickly diverging cones of light. Due to symmetry principles in fiber optics, the output angle of a fiber is approximately the same as the input angle.
The full acceptance angle is defined as the maximum allowable input/output angle for each light guide and is directly related to the numerical aperture specification (NA). For instance, our typical glass fiber light guides will accept a cone of light approximately 68°, which corresponds to 0.55. Quartz UV light guides have an acceptance angle that is dependant on wavelength and fiber bundle length; for our 36"" length UV guides, the angles are 42° at 254nm and 35° at 546nm for bundles fully illuminated by a source at half intensity. If the input angle, say 30°, is smaller than the acceptance angle, say 68°, then the output angle will still be 30°, not the 68° that one might think. If a fiber is overfilled, the output angle will be slightly less than the acceptance angle due to losses. Using light guides in conjunction with our Fiber-Lite Focusing Lenses will allow the output beam to be focused or collimated.
or view regional numbers
QUOTE TOOL
enter stock numbers to begin
Copyright 2023 | Edmund Optics, Ltd Unit 1, Opus Avenue, Nether Poppleton, York, YO26 6BL, UK
California Consumer Privacy Acts (CCPA): Do Not Sell or Share My Personal Information
California Transparency in Supply Chains Act