eo_logo
 
Product added to cart

Edmund Optics®

Knowledge Center

 Verified library of trusted technical resources created by our 240+ global engineers.

Filter
Search Results for: Clearance Microscopy (46)

Multiphoton Microscopy

Multiphoton microscopy is ideal for capturing high-resolution 3D images with reduced photobleaching and phototoxicity compared to confocal microscopy.

View Now Add to saved content

Confocal Microscopy

Confocal microscopy provides high resolution, elimination of out-of-focus glare due to spatial filtering, and reduction of light-induced damage to the sample.

View Now Add to saved content

Light Sheet Microscopy

Light sheet fluorescence microscopy uses a 2D laser sheet to illuminate a thin slice of the sample and excite fluorescence, reducing phototoxicity and damage.

View Now Add to saved content

Fluorophores and Optical Filters for Fluorescence Microscopy

Want to know more about fluorophores and optical filters for fluorescence microscopy? Find out more information and in stock optical filters at Edmund Optics.

View Now Add to saved content

Assembling Compact Machine Vision Microscopy Systems with 120i Plan APO Infinity Corrected Objectives

Reduce the size and weight of your high magnification machine vision system with infinity corrected TECHSPEC® 120i Plan APO Infinity Corrected Objectives.

View Now Add to saved content

Optical Microscopy Application: Fluorescence

Wondering how fluorescence microscopy works? Find out about the technique, systems, and more at Edmund Optics.

View Now Add to saved content

Optical Microscopy Application: Phase Contrast

Think you know all the advantages for using phase contrast in optical microscopy? Advantages, image appearance, and technical details can be found at Edmund Optics.

View Now Add to saved content

Optical Microscopy Application: Brightfield Illumination

Looking to use a simple technique for optical microscopy? Check out this article on brightfield illumination to find out more at Edmund Optics.

View Now Add to saved content

Optical Microscopy Application: Darkfield Illumination

Darkfield illumination is the opposite of brightfield illumination. Find out how darkfield differs from brightfield in optical microscopy at Edmund Optics.

View Now Add to saved content

Optical Microscopy Application: Differential Interference Contrast

Differential interference contrast (DIC) is one of the polarization techniques that can be used in optical microscopy. Learn about this technique at Edmund Optics.

View Now Add to saved content

Fluorescence Microscopy: In-Line Illumination with Imaging Filters

Want to know about fluorescence microscopy? Read this article by a Biomedical Product Line Engineer at Edmund Optics to learn more.

View Now Add to saved content

Microscopy and the Analysis of a Trichrome Stain

Imaging biological materials can be extremely difficult. Masson's trichrome stain helps differentiate components of cells from their surrounding tissues.

View Now Add to saved content

Medical Imaging with Filters and Quantum Dots

Fluorescence microscopy can be influenced by product or specification differences, which can be seen using comparative images. Learn more at Edmund Optics.

View Now Add to saved content

Fluorescence Imaging with Laser Illumination

Fluorescence imaging systems are composed of three major components, an illumination source, a photo-activated fluorophore sample, and detector.

View Now Add to saved content

Laser Damage Threshold Testing

Testing laser induced damage threshold (LIDT) is not standardized, so understanding how your optics were tested is critical for predicting performance.

View Now Add to saved content

Understanding Microscopes and Objectives

Learn about the different components used to build a microscope, key concepts, and specifications at Edmund Optics.

View Now Add to saved content

Metrology for Laser Optics

Metrology is critical for ensuring that optical components consistently meet their desired specifications, especially in laser applications.

View Now Add to saved content

Optical Cage System Application: Digital Video Microscope

Are you looking to simplify the assembly of a digital video microscope? Find out how a TECHSPEC Optical Cage System allows for quick build at Edmund Optics.

View Now Add to saved content

Why Use a Flat Top Laser Beam?

Converting a Gaussian laser beam profile into a flat top beam profile can have numerous benefits including minimized wasted energy and increased feature accuracy.

View Now Add to saved content

Basics of Ultrafast Lasers

Master the fundamentals of ultrafast lasers and how to choose optics that can withstand their high powers and short pulse durations.

View Now Add to saved content

What are Ultra-Thin Filters?

How are ultra-thin filters different from standard optical filters? Discover the unique features and capabilties of ultra-thin filters at Edmund Optics.

View Now Add to saved content

Introduction to Polarization

Is polarization a new topic for you? Learn about key terminology, types, and more information to help you understand polarization at Edmund Optics.

View Now Add to saved content

Polarizer Selection Guide

Edmund Optics' Polarizer Selection Guide refines your search for a specific type of polarizer.

View Now Add to saved content

Digital Video Microscope Objective Setups

Digital video microscopes use a camera to capture and record images. Read more about the components needed to assemble a video microscope at Edmund Optics.

View Now Add to saved content

Optical Cage System Application: Differential Interference Contrast (DIC) Digital Microscope

Differential interference microscopy enhances the contrast of object features that are otherwise difficult to observe using brightfield microscopy.

View Now Add to saved content

Optical Coherence Tomography

Optical coherence tomography (OCT) is a noninvasive, high-resolution optical imaging technology that creates cross-sectional images from interference signals

View Now Add to saved content

Optical Filters

Do you want to learn about optical filters? Find terminology, fabrication techniques, a selection guide, and application examples at Edmund Optics.

View Now Add to saved content

Polymer Polarizers and Retarders

Polymer polarizers and retarders, consisting of sheets of polyvinyl alcohol and TAC cellulose triacetate, alter the polarization of light.

View Now Add to saved content

Basic Principles of Raman Scattering and Spectroscopy

Raman spectroscopy is a technique used to identify the chemical composition of samples based on how light scatters off of them. Learn more & view related optics

View Now Add to saved content

System Throughput, f/#, and Numerical Aperture

When it comes to your lens, the f/# is one of the most important settings because it controls multiple parameters. Find out what the f/# controls at Edmund Optics.

View Now Add to saved content